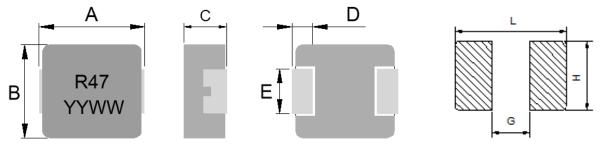
1. Part No. Expression

<u>PIC 1206 HP R 47 M F</u>


(a) (b) (c) (d) (e) (f)

(a) Series Code

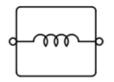
(c) Material Code

- (b) Dimension Code
- (d) Inductance Code
- (e) Tolerance Code
- (f) Packaging Code

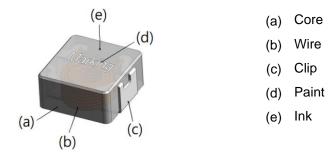
2. Configuration & Dimensions (Unit: mm)

Recommended PCB Layout

Note: 1. The above PCB layout reference only.


2. Recommend solder paste thickness at 0.15 mm and above.

3. Marking: Top= Inductance Code, Bottom=YYWW (Year/World week), Black

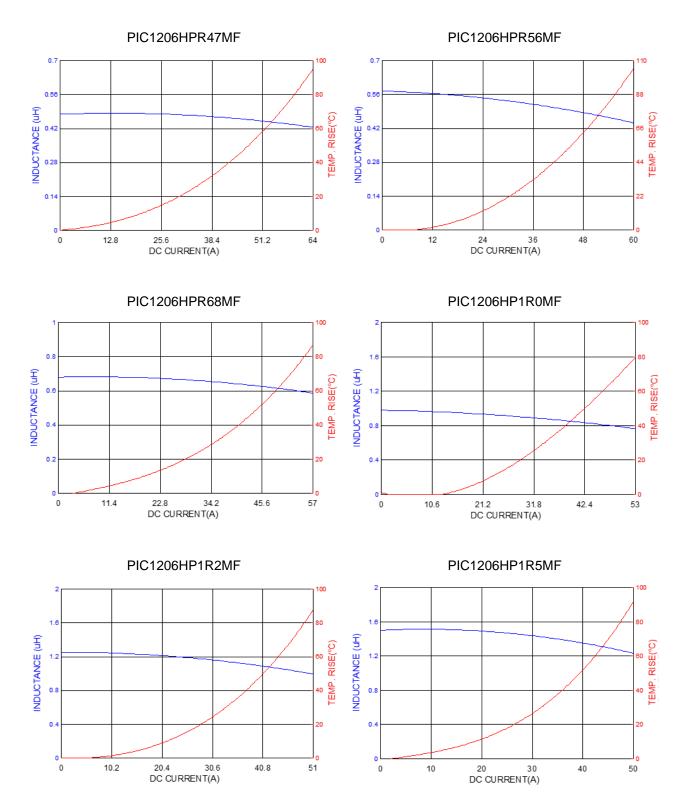

А	В	С	D	E	G	Н	L
13.5±0.5	12.5±0.3	5.7±0.3	2.3±0.3	4.7±0.3	8.0 Ref	5.0 Ref	14.2 Ref

3. Schematic

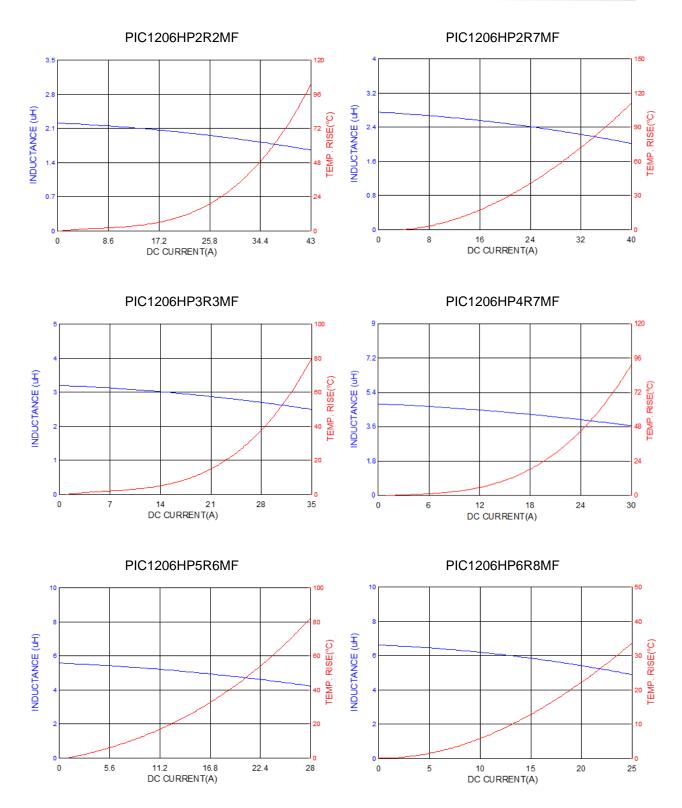
4. Material List

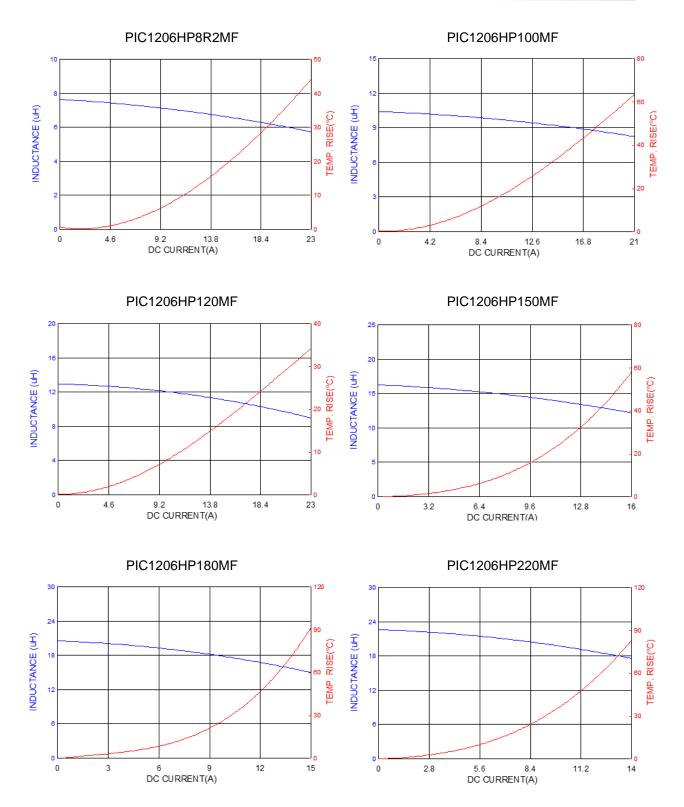
5. General Specifications

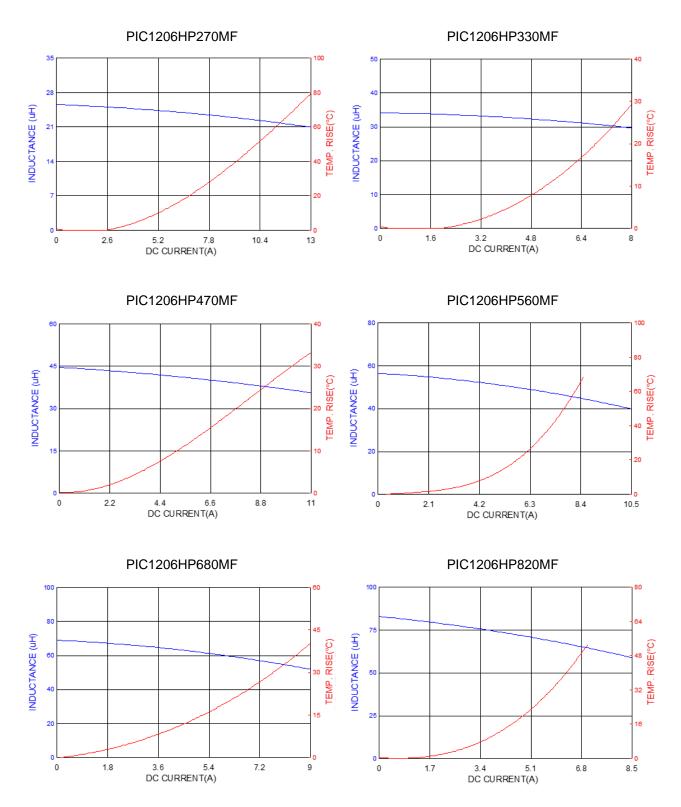
- (a) Operating Temp.: -40°C to +125°C (including self-temperature rise)
- (b) Storage Temp.: -40°C to +125°C (on board)
- (c) All test data referenced to 25°C ambient.
- (d) Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of 40°C.
- (e) Saturation Current (Isat) will cause inductance L0 to drop approximately 30%.
- (f) Part Temperature (Ambient + Temp. Rise): Should not exceed 125°C under worst case operating conditions.
- (g) Maximum Operating Voltage: 80V
- (h) Storage Condition (Component in its packaging)
 - i) Temperature: Less than 40°C
 - ii) Humidity: Less than 60% RH



6. Electrical Characteristics


Part Number	Inductance (µH) @0A	Test	Irms (A)	lsat1 (A)	Isat2 (A)		DCR (mΩ)	
	±20%	Frequency	Тур	Тур	Тур	Тур	Max	
PIC1206HPR47MF	0.47	1.0V/100KHz	38	60	64	0.92	1.3	
PIC1206HPR56MF	0.56	1.0V/100KHz	35	56	60	1.15	1.5	
PIC1206HPR68MF	0.68	1.0V/100KHz	33	53	57	1.33	1.7	
PIC1206HP1R0MF	1.00	1.0V/100KHz	29	45	53	1.8	2.4	
PIC1206HP1R2MF	1.20	1.0V/100KHz	28	44	51	2.1	2.8	
PIC1206HP1R5MF	1.50	1.0V/100KHz	26	43	50	2.7	3.2	
PIC1206HP2R2MF	2.20	1.0V/100KHz	21	34	43	4.0	4.7	
PIC1206HP2R7MF	2.70	1.0V/100KHz	19	31	40	4.6	5.4	
PIC1206HP3R3MF	3.30	1.0V/100KHz	17	28	35	5.8	7.1	
PIC1206HP4R7MF	4.70	1.0V/100KHz	16	25	30	9.5	11.5	
PIC1206HP5R6MF	5.60	1.0V/100KHz	15.5	22	28	10.8	12.6	
PIC1206HP6R8MF	6.80	1.0V/100KHz	15	19	25	12	13.8	
PIC1206HP8R2MF	8.20	1.0V/100KHz	11	17	23	13.6	16	
PIC1206HP100MF	10.0	1.0V/100KHz	11	15.5	21	18	20.7	
PIC1206HP120MF	12.0	1.0V/100KHz	9.5	13.5	18	20	23	
PIC1206HP150MF	15.0	1.0V/100KHz	9.0	13	16	25	29	
PIC1206HP180MF	18.0	1.0V/100KHz	8.5	12	15	30	35	
PIC1206HP220MF	22.0	1.0V/100KHz	8.0	11	14	34	39.5	
PIC1206HP270MF	27.0	1.0V/100KHz	7.0	9.0	13	49	56	
PIC1206HP330MF	33.0	1.0V/100KHz	6.0	8.0	12.0	65	75	
PIC1206HP470MF	47.0	1.0V/100KHz	5.5	7.0	11.0	80	90	
PIC1206HP560MF	56.0	1.0V/100KHz	5.3	6.5	10	101	118	
PIC1206HP680MF	68.0	1.0V/100KHz	5.0	6.0	9.0	120	140	
PIC1206HP820MF	82.0	1.0V/100KHz	4.5	5.5	8.5	138	161	
PIC1206HP101MF	100	1.0V/100KHz	4.0	5.0	8.0	180	200	
PIC1206HP121MF	120	1.0V/100KHz	3.5	4.5	7.0	210	235	
PIC1206HP151MF	150	1.0V/100KHz	3.0	4.0	6.0	300	350	


7. Characteristics Curve



20

6

4.8

NOTE: Specifications subject to change without notice. Please check our website for latest information.

40

C

0

1.2

2.4 3.6 DC CURRENT(A)

8. Soldering Specification

Mildly activated rosin fluxes are preferred. Our terminations are suitable for re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

8-1. IR Soldering Reflow

Recommended temperature profiles for lead free re-flow soldering in Figure 1, Table 1.1 & 1.2 (J-STD-020E).

8-2. Iron Reflow

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended (Figure 2).

Note:

- (a) Preheat circuit and products to 150°C.
- (b) 355°C tip temperature (Max.)
- (c) Never contact the ceramic with the iron tip
- (d) 1.0mm tip diameter (Max.)
- (e) Use a 20 watt soldering iron with tip diameter of 1.0mm
- (f) Limit soldering time to 4~5 sec.

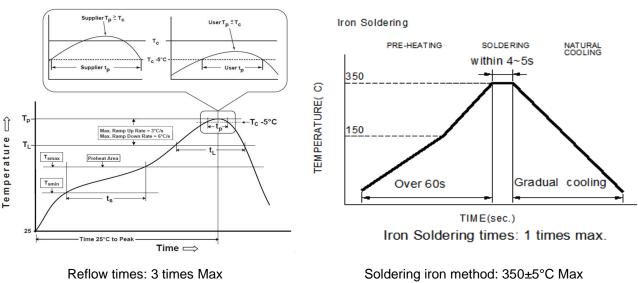


Figure 1: IR Soldering Reflow

Soldering iron method: 350±5°C Max Figure 2: Iron soldering temperature profiles

Table (1.1) Reflow Profiles

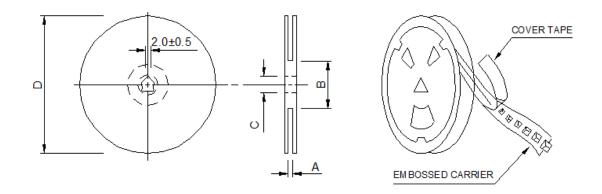
Profile Type:	Pb-Free Assembly
Preheat	
-Temperature Min (T _{smin})	150°C
-Temperature Max (T _{smax})	200°C
-Time (t _s) from (T _{smin} to T _{smax})	60-120seconds
Ramp-up rate (T∟to T _p)	3°C /second max.
Liquids temperature (T _L)	217°C
Time (t∟) maintained above T∟	60-150 seconds
Classification temperature (T _c)	See Table (1.2)
Time (t_p) at Tc- 5°C (Tp should be equal to or less than Tc.)	*< 30 seconds
Ramp-down rate (T _p to T _L)	6°C /second max.
Time 25°C to peak temperature	8 minutes max.

 $\ensuremath{\text{Tp}}$: maximum peak package body temperature, $\ensuremath{\text{Tc}}$: the classification temperature.

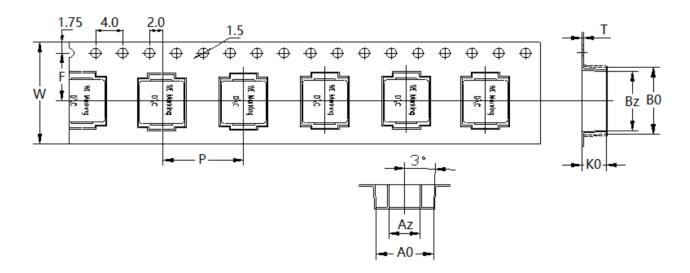
For user (customer) $\ensuremath{\text{Tp}}$ should be equal to or less than $\ensuremath{\text{Tc.}}$

*Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.

· · ·	0	•	()	
	Package	Volume mm ³	Volume mm ³	Volume
	Thickness	<350	350-2000	mm ³ >2000
PB-Free	<1.6mm	260°C	260°C	260°C
	1.6-2.5mm	260°C	250°C	245°C
Assembly	≥2.5mm	250°C	245°C	245°C


Table (1.2) Package Thickness/Volume and Classification Temperature (T_c)

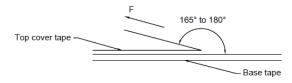
Reflow is referred to standard IPC/JEDEC J-STD-020E.


9. Packaging Information

9-1. Reel Dimension (Unit: mm)

Туре А		В	С	D
13"x24mm	24.4+2.0/-0.0	100.0±2.0	13.0+0.5/-0.2	330.0

9-2. Tape Dimension (Unit: mm)


B0	Bz	A0	Az	K0
14.10±0.10	13.00±0.10	12.90±0.10	7.00±0.10	6.50±0.10
Р	P W		t	-
16.00±0.10 24.00±0.30		11.50±0.10	0.35±0.05	-

9-3. Packaging Quantity (Unit: Pcs)

Chip/ Reel	500		
Inner box	1,000		
Carton	4,000		

9-4. Tearing Off Force

The force for tearing off cover tape is according to the follow table, in the arrow direction under the following conditions.

(Referenced ANSI/EIA-481-D-2008 of 4.11 standard)

Room	Room	Room atm (hPa)	Tearing	Tape Size	8 mm	12 to 56 mm	72 mm or Wider
Temp. (°C)	Humidity (%)		Speed	Tearing Off Force	10~100	10~130	10~150
5~35	45~85	860~1060	300±10	(grams)			

Application Notice

1. Storage Conditions

To maintain the solderability of terminal electrodes:

- (a) Recommended products should be used within 12 months from the time of delivery.
- (b) The packaging material should be kept where no chlorine or sulfur exists in the air.
- 2. Transportation
 - (a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
 - (b) Vacuum pick up is strongly recommended for individual components.
 - (c) Bulk handling should ensure that abrasion and mechanical shock are minimized.

NOTE: Specifications subject to change without notice. Please check our website for latest information.

P11